Feature | RSNA 2017 | January 29, 2018

The symposium at RSNA 2017 discussed concerns over artificial intelligence

Deep learning, artificial intelligence in radiology was the prime topic of discussion at the RSNA/AAPM symposium at RSNA 2017.

Deep learning, artificial intelligence in radiology was the prime topic of discussion at the RSNA/AAPM symposium at RSNA 2017.


When considering potential topics for the 2017 Radiological Society of North America (RSNA)/American Association of Physicists in Medicine (AAPM) Symposium, there was no question that it should address the growing excitement and concern surrounding artificial intelligence (AI).

One of the organizers, Paul E. Kinahan, Ph.D., vice chair of radiology research and head of the Imaging Research Laboratory at the University of Washington, Seattle, was interested in probing the convergence of radiology and AI and addressing some of the fears radiologists have voiced about the rapid growth of the technology. Many are wondering: will AI eventually render radiologists’ jobs superfluous and unnecessary?

“The answer to that question is clearly ‘no’,” said Kinahan. “On the other hand, aspects of artificial intelligence or deep learning or machine learning (ML) will certainly help elevate the productivity and accuracy of radiology.”

While there is often confusion over the terms, Kinahan said AI is essentially the simulation of intelligent behavior in computers, while ML refers to the algorithm or method used in AI. Deep learning is an area of ML research with the objective of moving ML closer to AI.

Kinahan moderated this year’s symposium, “Machine Learning in Radiology: Why and How?” was held Nov. 28 at RSNA 2017. Presenters are Keith Dreyer, DO, PhD, vice chair of radiology and director of the Center for Clinical Data Science at Massachusetts General Hospital in Boston, and associate professor of radiology at Harvard Medical School, and Antonio Criminisi, PhD, a principal researcher at Microsoft in the United Kingdom.

One issue Kinahan focused on during this year’s symposium was how AI fits into the whole big data question. “There’s lot of room for applying AI and machine learning methods to medical images themselves, but we would really like to see how we are able to integrate with the other data such as electronic medical records (EMRs) or pathology data for example,” he explained.

That type of integration is not without obstacles.

“We are deeply siloed into our own big data components, and radiology is one of the biggest,” Kinahan said. “How these big pockets of data get connected will almost certainly rely on assistance from artificial intelligence.”

While healthcare has been quick to adapt new technologies overall, that’s not the case with AI and ML, Dr. Dreyer said. “Healthcare has been late to the market in this area.”

Of course, incorporating AI or ML is easier said than done and presents a number of challenges — many of which Dr. Dreyer plans to discuss during his presentation, “Harnessing Artificial Intelligence.”

“It starts with raw data and constructing that information into data sets, applying the correct AI algorithms, creating models, testing inference engines that are created and validating them,” said Keith J. Dreyer, DO, Ph.D., FACR, chief data science officer, departments of radiology at Massachusetts General Hospital and Brigham and Women's Hospital. “Then we must translate them into clinical practice, go through regulatory approval followed by productization and commercialization.”

“Right now, we can count on one hand the number of AI medical imaging solutions that have made it through the FDA,” Dreyer explained. “And even fewer are in clinical practice, primarily because of the challenges involved.”

Antonio Criminisi, Ph.D., Microsoft’s principal researcher for AI, spoke about one of those solutions during his presentation, “Assistive AI for Cancer Treatment.” Quantifying the extent and size of a tumor such as a glioblastoma can be difficult, imprecise and time consuming, Criminisi said. But Microsoft’s InnerEye research project uses state of the art ML techniques to automatically detect, segment and measure both healthy tissue and anomalies, among other functions.

“AI-powered software tools like InnerEye will significantly reduce the time radiation oncologists need for radiotherapy planning,” Criminisi said.

The tool will also help radiologists track and measure the progression of cancer and other diseases and help surgeons plan complex surgeries, he added.

“This is the fruit of a decade-long research project that is now being translated into a practical and impactful software tool,” he said. “The aim is to increase the productivity of expert practitioners such as oncologists, radiologists and surgeons, while at the same time reducing costs for healthcare providers.”

Take an indepth view into AI products being shown on the show floor at RSNA 2017 in the VIDEO "Technology Report: Artificial Intelligence at RSNA 2017."

 

For more information from RSNA 2017 — Key RSNA 2017 Study Presentations, Trends and Video
 

 

 


Related Content

News | Breast Imaging

Aug. 28, 2024 — Rezolut, LLC recently debuted its latest offering for patients during their annual mammogram ...

Time August 29, 2024
arrow
News | Digital Pathology

Paige has launched OmniScreen, an AI-driven biomarker module capable of evaluating over 505 genes and detecting 1,228 ...

Time August 27, 2024
arrow
News | Computed Tomography (CT)

SPONSORED CONTENT — Fujifilm’s latest CT technology brings exceptional image quality to a compact and user- and patient ...

Time August 06, 2024
arrow
News | RSNA

July 31, 2024 — The National Imaging Informatics Course (NIIC), a pioneering program in the radiology field, will return ...

Time July 31, 2024
arrow
News | Radiology Business

July 31, 2024 — The American Registry of Radiologic Technologists (ARRT) announced the three Registered Technologists (R ...

Time July 31, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 30, 2024
arrow
Feature | Computed Tomography (CT) | By Melinda Taschetta-Millane

In the ever-evolving landscape of medical imaging, computed tomography (CT) stands out as a cornerstone technology ...

Time July 30, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
Subscribe Now