October 6, 2009 - At the University of Virginia Health System where they opened a new Magnetic Resonance Guided Focused Ultrasound Surgery Center, specialists are using magnetic resonance guided focused ultrasound (MRgFUS) to perform research that will represent a wide range of disciplines, including anesthesiology, biomedical engineering, gynecology, neurology, neurosurgery, oncology, radiology, radiation oncology surgery and urology.

Within coming months, research will focus on using MRgFUS to treat brain, breast, prostate, bone and liver tumors and conditions such as epilepsy, stroke, chronic pain, Parkinson's disease and essential tremor.

Neal F. Kassell, M.D., a professor of neurosurgery at the University of Virginia's School of Medicine believes that MRgFUS may be the most important therapeutic development since the scalpel.

During MRgFUS treatments, which are noninvasive and performed on an outpatient basis, patients lie on a table while doctors use the visual capabilities of magnetic resonance imaging to direct hundreds of individual and normally harmless sound waves at a single treatment point deep inside the body.

When ultrasound waves intersect the intense energy destroys tumor cells, and according to Alan H. Matsumoto, M.D. and chairman of UVA’s Department of Radiology and co-director of the new center, the technology is so precise that it can treat sites as small as a millimeter.

Treatments, which will become available in late October, will take about three hours. Side effects, if any, are typically minimal - minor cramping is most common - and patients can expect to feel well enough to resume daily activities almost immediately.

James M. Larner, M.D., director of UVA's Focused Ultrasound Center and chairman of the Department of Radiation Oncology, notes that focused ultrasound has the ability to destroy 100 percent of cancer cells, unlike chemotherapy, which kills only a certain percentage of malignant cells. Also, cancer cells cannot become resistant to focused ultrasound in contrast to chemotherapy. In addition, focused ultrasound has a rapid dosing drop off, meaning the technology concentrates high levels of heat on a target site but does not spill over to nearby healthy tissue, potentially causing damage or patient complications.

For more information: www.virginia.edu


Related Content

News | PET-CT

July 31, 2024 — In a head-to-head comparison with FDG PET/CT, FDG PET/MRI demonstrated comparable or superior diagnostic ...

Time July 31, 2024
arrow
News | Radiology Business

July 31, 2024 — The American Registry of Radiologic Technologists (ARRT) announced the three Registered Technologists (R ...

Time July 31, 2024
arrow
News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiology Business

July 25, 2024 — The radiology gender gap is decreasing, but there remains work to be done, according to an editorial ...

Time July 25, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
Videos | Breast Imaging

Don't miss ITN's latest "One on One" video interview with AAWR Past President and American College of Radiology (ACR) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
Subscribe Now