News | X-Ray | August 28, 2018

Japanese study may open a new way to generate X-ray beams

Scientists Advance Technique for Developing Novel Light Beams from Synchrotron Radiation

August 28, 2018 — A new study has demonstrated a method that produces novel light beams from synchrotron light sources, opening up a new way to generate X-ray beams.

Structured light, created using the process of generating and applying light to a surface, is important in many of today's devices, such as 3-D scanners, dual photography and microscopic technology.

The team of Japanese scientists — led by Shunya Matsuba, an assistant professor at the Hiroshima Synchrotron Radiation Center at Hiroshima University — has shown that structured light, in the form of a vector beam (light beams whose polarization direction rotates around its axis), can be produced from the superposition of two optical vortex beams (beams of lights that contain a point of zero intensity, forming a spiral phase structure.)

"We have demonstrated the generation of the vector beam using synchrotron radiation. This work has opened a way to generate X-ray vector beams," said co-author Prof. Masahiro Katoh of the Institute for Molecular Science (IMS) at the National Institutes of Natural Sciences/Sokendai in Japan.

The production of structured light in the X-ray wavelengths has been challenging. The new technique presented by the Japanese scientists can potentially allow for the use of such structured light in research areas accessible only with synchrotron radiation, such as X-ray absorption spectroscopy and X-ray crystallography.

The scientists based their method on a technique that produces circularly polarized light from two linearly polarized ones whose polarization directions are orthogonal to each other. In synchrotron light sources, this method has been applied to uniformly polarized beams coming from two undulators. An undulator is a device that emits quasi-monochromatic light with various polarizations.

Matsuba and his team applied this method for two vortex beams coming from two helical undulators positioned in tandem. The research follows previous studies that have used lasers and optical components to create vector beams, with wavelengths usually within the visible or near-infrared portions of the electromagnetic spectrum.

The findings were published in the journal of Applied Physics Letters1 in July 2018.

Katoh explained, "The next step of this research is to demonstrate the generation of vector beams of other types, for example, radially polarized beams. Our ultimate goal is to control all the optical properties of synchrotron radiation, such as wavelength, coherence, spatial, temporal structures and so on." This will pave the way for new opportunities in many fields, including X-ray diffraction, scattering and absorption/emission spectroscopy due to the new method of generating structured light that has been demonstrated in this study.

For more information: www.aip.scitation.org/journal/apl

Reference

1. Matsuba S., Kawase K., Miyamoto A., et al. Generation of vector beam with tandem helical undulators. Applied Physics Letters, July 13, 2018. https://doi.org/10.1063/1.5037621


Related Content

News | Digital Radiography (DR)

July 18, 2024 — At the Annual Meeting of AHRA (the Association for Medical Imaging Management), Agfa Radiology Solutions ...

Time July 18, 2024
arrow
News | Interventional Radiology

June 21, 2024 — GE HealthCare, a leading global medical technology, pharmaceutical diagnostics, and digital solutions ...

Time June 21, 2024
arrow
News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
News | Digital Radiography (DR)

June 12, 2024 — Carestream launched its Image Suite MR 10 Software to help deliver a boost to productivity and ...

Time June 12, 2024
arrow
News | Artificial Intelligence

June 6, 2024 — Sunway Medical Centre, Sunway City (SMC), the largest private quaternary hospital in Malaysia, embarks on ...

Time June 06, 2024
arrow
News | Digital Radiography (DR)

June 6, 2024 — In a landmark study, the latest in technology innovation by Konica Minolta Healthcare was used to develop ...

Time June 06, 2024
arrow
News | FDA

May 30, 2024 — Vuze Medical, which develops medical technology to transform intra-operative guidance in spinal ...

Time May 30, 2024
arrow
News | Artificial Intelligence

May 22, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, recently ...

Time May 22, 2024
arrow
News | Cardiac Imaging

May 17, 2024 — The Cum Laude Award-Winning Online Poster presented during the 124th ARRS Annual Meeting found that the ...

Time May 17, 2024
arrow
Feature | Digital Radiography (DR) | By Melinda Taschetta-Millane

Digital radiography (DR) continues to advance at a rapid pace with today’s technological innovations and evolving ...

Time May 06, 2024
arrow
Subscribe Now