News | Stroke | March 31, 2016

MRI study reveals better structural integrity in patients with higher speech-fluency test scores

stroke, language recovery, right brain, MRI, Neurology study

March 31, 2016 — New research suggests that looking at structures in the right side of the brain may help predict who will better recover from language problems after a stroke. The study is published in Neurology, a medical journal of the American Academy of Neurology (AAN).

The brain is divided into two hemispheres, the right and the left. The left side is dominant in language and speech-motor functions in most people, so when it is damaged by stroke, it can lead to aphasia. Aphasia is difficulty speaking, naming, repeating and understanding language.

“Aphasia is a common and devastating symptom for people who have strokes on the left side of the brain,” said study author Gottfried Schlaug, M.D., Ph.D., of Harvard Medical School in Boston, and a member of the AAN. “Although many people recover to some degree, many people never make a full recovery, even after intense speech therapy.”

The study involved 33 people with an average age of 58 years who had a stroke on the left side of the brain, on average about two and a half years prior to undergoing magnetic resonance imaging (MRI) and speech fluency tests. All had aphasia that persisted to different degrees even after their usual speech therapy. Researchers also tested 13 healthy people of similar ages who had never had a stroke.

Both the healthy participants and the stroke group had brain scans employing a special MRI technique that allowed them to examine brain tissue integrity and connectivity in various regions within the brain. Better structural integrity might suggest better connections among areas of the brain.

They found that patients with aphasia who performed better on the speech-fluency tests were more likely to have higher structural integrity in three areas of the brain than the control group: the right middle temporal gyrus, the right inferior frontal and the right precentral gyrus. Researchers were able to show the contribution of these right hemisphere regions to speech-fluency, since the correlation scores between the amount of injury to the left hemisphere and speech-fluency scores were improved when the right hemisphere information was added to the analysis. (For example, the amount of variance explained went from 50 percent to 62 percent for words per minute as one of two fluency measures when information from the right hemisphere was added to the statistical analysis).

The study suggests that the right side of the brain reorganizes itself to help recover language/speech-motor functions. Because the study only looked at one point in time, it is also possible that those people who recovered better may have had better structural integrity and more connectivity in those right hemisphere areas of the brain before their strokes.

“This study suggests that a well-wired right brain actively supports recovery from aphasia,” said A.M. Barrett, M.D., of the Kessler Foundation in West Orange, N.J., and fellow of the American Academy of Neurology, who wrote a corresponding editorial. “More research is needed to determine if the differences in structural integrity in the right brain are there before a stroke, develop after a stroke or are influenced by some other factor. Eventually it may be possible to develop new targets in the right brain for people with aphasia to be treated with new therapies, such as brain stimulation”

Schlaug also added that melodic intonation therapy, an intonation-based therapy that is geared towards the right hemisphere, may be another possible new treatment target.

The study was supported by the National Institutes of Health, Richard and Rosalyn Slifka Family Fund, Tom and Suzanne McManmon Family Fund, and Mary Crown and William Ellis Fund.

For more information: www.neurology.org


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Radiology Imaging

July 23, 2024 — EMVision, an Australian medical device company focused on the development and commercialization of ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Clinical Trials

June 27, 2024 — Prenuvo, which makes whole-body MRI screening for early cancer detection and other diseases, has ...

Time June 27, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | MRI Breast

June 12, 2024 — Royal Philips recently announced the 1,111th installation of its revolutionary BlueSeal 1.5T magnet ...

Time June 12, 2024
arrow
Subscribe Now