News | Lung Imaging | March 11, 2016

Clean energy combustion technology has been used to successfully hyperpolarize krypton gas for MRI scanning of the lungs

lung disease, MRI scans, contrast agent, hyperpolarized krypton

March 11, 2016 — New scanning technology which will give a much clearer picture of lung disease has taken a major step forward thanks to scientists at The University of Nottingham.

The experts at the Sir Peter Mansfield Imaging Centre have developed a process using specially treated krypton gas as an inhalable contrast agent to make the spaces inside the lungs show up on a magnetic resonance imaging (MRI) scan. It is hoped the new process will eventually allow doctors to virtually see inside the lungs of patients.

Traditional MRI uses hydrogen protons in the body as molecular targets to give a picture of tissue, but this does not give a detailed picture of the lungs because they are full of air. Recent technological developments have led to a novel imaging methodology called inhaled hyperpolarized gas MRI that uses lasers to 'hyperpolarize' a noble (inert) gas which aligns (polarizes) the nuclei of the gas so it shows up on an MRI scan.

The work will make 3-D imaging using 'atomic spies' like helium, xenon or krypton possible in a single breath hold by the patient. Nottingham has pioneered hyperpolarized krypton MRI and is currently advancing this technology towards the clinical approval processes.

Hyperpolarized MRI research has been trying to overcome a problem with these noble gases retaining their hyperpolarized state for long enough for the gas to be inhaled, held in the lungs and scanned. Now in a paper published in the Proceedings of the National Academy of Sciences, the Nottingham team has developed a new technique to generate hyperpolarized krypton gas at high purity, a step that will significantly facilitate the use of this new contrast agent for pulmonary MRI.

Chair in Translational Imaging at the Sir Peter Mansfield Imaging Centre, Prof. Thomas Meersmann, said: "It is particularly demanding to retain the hyperpolarized state of krypton during preparation of this contrast agent. We have solved a problem by using a process that is usually associated with clean energy-related sciences. It's called catalytic hydrogen combustion. To hyperpolarize the krypton-83 gas we diluted it in molecular hydrogen gas for the laser pumping process. After successful laser treatment the hydrogen gas is mixed with molecular oxygen and literally exploded it away in a safe and controlled fashion through a catalyzed combustion reaction.

"Remarkably, the hyperpolarized state of krypton-83 survives the combustion event. Water vapor, the sole product of the 'clean' hydrogen reaction, is easily removed through condensation, leaving behind the purified laser-polarized krypton-83 gas diluted only by small remaining quantities of harmless water vapor. This development significantly improves the potential usefulness of laser-pumped krypton-83 as MRI contrast agent for clinical applications."

This new technique can also be used to hyperpolarize another useful noble gas, xenon-129, and may lead to a cheaper and easier production of this contrast agent.

As part of a recent Medical Research Council funding award, hyperpolarized krypton-83 is currently being developed for whole body MRI at high magnetic field strength in the Sir Peter Mansfield Imaging Centre's large 7 Tesla scanner. Studies will be carried out first on healthy volunteers before progressing to patient trials at a later phase.

For more information: www.pnas.org


Related Content

News | Artificial Intelligence

Sept. 13, 2024 — Bayer Calantic Digital Solutions has announced the availability of a new eBook that addresses how ...

Time September 12, 2024
arrow
News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Radiology Business

July 9, 2024 — Bracco and Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time July 09, 2024
arrow
News | Radiation Therapy

July 3, 2024 — Results from a new study led by researchers at The University of Texas MD Anderson Cancer Center support ...

Time July 03, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
Subscribe Now