News | Artificial Intelligence | September 03, 2019

Machine learning-based model uses texture analysis to identify whether thyroid nodules are benign or malignant

New Radiomics Model Uses Immunohistochemistry to Predict Thyroid Nodules

Workflow of radiomics analysis for IHC indicators. Yellow lines denote area of analysis; red lines denote ROI for radiomic features extraction. X = original image, L = low-pass filter, H = high-pass filter. Image courtesy of Jiabing Gu, et al.


September 3, 2019 — Researchers have validated a first-of-its-kind machine learning–based model to evaluate immunohistochemical (IHC) characteristics in patients with suspected thyroid nodules, according to an ahead-of-print article published in the December issue of the American Journal of Roentgenology (AJR).1 The research team achieved “excellent performance” for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3 and thyroperoxidase based upon computed tomography (CT) images.

“When IHC information is hidden on CT images,” principal investigator Jiabing Gu explained, “it may be possible to discern the relation between this information and radiomics by use of texture analysis.” 

To assess whether texture analysis could be utilized to predict IHC characteristics of suspected thyroid nodules, Gu and colleagues from China’s University of Jinan enrolled 103 patients (training cohort–to-validation cohort ratio, ≈ 3:1) with suspected thyroid nodules who had undergone thyroidectomy and IHC analysis from January 2013 to January 2016. All 103 patients — 28 men, 75 women; median age, 58 years; age range, 33–70 years — underwent CT before surgery, and 3D Slicer v 4.8.1 was used to analyze images of the surgical specimen.

To facilitate test-retest methods, 20 patients were imaged in two sets of CT series within 10–15 minutes, using the same scanner (LightSpeed 16, Philips Healthcare) and protocols, without contrast administration. These images were used only to select reproducible and nonredundant features, not to establish or verify the radiomic model. 

The Kruskal-Wallis test (SPSS v 19, IBM) was employed to improve classification performance between texture feature and IHC characteristic. Gu et al. considered characteristics with p < 0.05 significant, and the feature-based model was trained via support vector machine methods, assessed with respect to accuracy, sensitivity, specificity, corresponding AUC and independent validation. From 828 total features, 86 reproducible and nonredundant features were selected to build the model. 

The best performance of the cytokeratin 19 radiomic model yielded accuracy of 84.4 percent in the training cohort and 80 percent in the validation cohort. Meanwhile, the thyroperoxidase and galectin 3 predictive models evidenced accuracies of 81.4 percent and 82.5 percent in the training cohort, and 84.2 percent and 85 percent in the validation cohort, respectively. 

Noting that cytokeratin 19 and galectin 3 levels are high in papillary carcinoma, Gu maintained that these models can help radiologists and oncologists to identify papillary thyroid cancers, “which is beneficial for diagnosing papillary thyroid cancers earlier and choosing treatment options in a timely manner.”

Ultimately, asserted Gu, “this model may be used to identify benign and malignant thyroid nodules.”

For more information: www.ajronline.org

 

Reference

1. Gu J., Zhu J., Qiu Q., et al. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of Machine Learning–Based Radiomics. American Journal of Roentgenology, published online Aug. 28, 2019. DOI: 10.2214/AJR.19.21535


Related Content

News | Breast Imaging

Aug. 28, 2024 — Rezolut, LLC recently debuted its latest offering for patients during their annual mammogram ...

Time August 29, 2024
arrow
News | Digital Pathology

Paige has launched OmniScreen, an AI-driven biomarker module capable of evaluating over 505 genes and detecting 1,228 ...

Time August 27, 2024
arrow
News | Computed Tomography (CT)

At the annual AHRA (American Healthcare Radiology Administrators) conference in Orlando, Florida, Bayer announced an ...

Time August 09, 2024
arrow
News | RSNA

July 31, 2024 — The National Imaging Informatics Course (NIIC), a pioneering program in the radiology field, will return ...

Time July 31, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 30, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
Videos | Information Technology

Industry trade shows and conferences seem to be making their comeback in 2024. And the Healthcare Information and ...

Time July 25, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
Subscribe Now