News | Magnetic Resonance Imaging (MRI) | July 05, 2018

While new research suggests ultra-high-field 7T MRI could pose problems for people with amalgam fillings, conventional 1.5T scans were found to be safe

High-Strength MRI May Release Mercury from Amalgam Dental Fillings

July 5, 2018 — Exposure to ultra-high-strength magnetic resonance imaging (MRI) may release toxic mercury from amalgam fillings in teeth, according to a new study appearing online in the journal Radiology. The effect was not seen, however, in the lower strength, more commonly used 1.5-Tesla (T) MRI.

Amalgam fillings, also known as silver fillings, have been a staple of dentistry for many years. Amalgam consists of approximately 50 percent mercury, a known toxin that can cause a host of harmful effects in humans. Despite the presence of mercury, the U.S. Food and Drug Administration (FDA) considers amalgam fillings safe for adults and children older than age six.

“In a completely hardened amalgam, approximately 48 hours after placing on teeth, mercury becomes attached to the chemical structure, and the surface of the filling is covered with an oxide film layer,” said the study’s lead author, Selmi Yilmaz, Ph.D., a dentist and faculty member at Akdeniz University in Antalya, Turkey. “Therefore, any mercury leakage is minimal.”

Previous research has found that exposure to the magnetic fields of MRI could cause mercury to leak from amalgam fillings. This concern has been heightened by the recent arrival of ultra-high-strength 7T scanners in the clinic. The stronger magnetic field of 7T MRI yields more anatomical detail, but its effects on amalgam dental fillings have not been studied.

To learn more, Yilmaz and colleague, Mehmet Zahit Adişen, Ph.D., evaluated mercury released from dental amalgam after 7T and 1.5T MRI in teeth that had been extracted from patients for clinical indications. While 7T MRI was approved by the FDA in 2017, it has extremely limited availability. The lower-strength 1.5T MRI is widely available and commonly used for patient exams.

The researchers opened two-sided cavities in each tooth and applied amalgam fillings. After nine days, two groups of 20 randomly selected teeth were placed in a solution of artificial saliva immediately followed by 20 minutes of exposure to 1.5T or 7T MRI. A control group of teeth was placed in artificial saliva only.

When the researchers analyzed the artificial saliva, the mercury content in the 7T, 1.5T and control group was 0.67 ± 0.18, 0.17 ± 0.06 and 0.14 ± 0.15 parts per million (ppm), respectively.  At 0.67 ppm, the mercury content in the 7T group was approximately four times the levels found in the 1.5T group and the control group.

“In our study, we found very high values of mercury after ultra-high-field MRI,” Yilmaz said. “This is possibly caused by phase change in amalgam material or by formation of microcircuits, which leads to electrochemical corrosion, induced by the magnetic field.”

An important point of discrimination concerning safety and hazard to human health is the amount of mercury that is absorbed by the vital tissues.

“It is not clear how much of this released mercury is absorbed by the body,” Yilmaz said.

Further studies may be warranted, Yilmaz added, to evaluate the relationship between high-field MRI and release of mercury from dental amalgam. The researchers have three ongoing projects focused on phase and temperature changes of dental amalgam across different magnetic fields.

As no evidence of harmful effects was found in the 1.5T group, patients with amalgam fillings should not be unduly concerned about having an MRI exam.

For more information: www.pubs.rsna.org/journal/radiology

Reference

Yilmaz S., Adisen M.Z. "Ex Vivo Mercury Release from Dental Amalgam after 7.0-T and 1.5-T MRI," Radiology. June 26, 2018. https://doi.org/10.1148/radiol.2018172597


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Clinical Trials

June 27, 2024 — Prenuvo, which makes whole-body MRI screening for early cancer detection and other diseases, has ...

Time June 27, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | MRI Breast

June 12, 2024 — Royal Philips recently announced the 1,111th installation of its revolutionary BlueSeal 1.5T magnet ...

Time June 12, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
Subscribe Now