News | Radiation Dose Management | July 31, 2017

Technology allows automatic calculation of organ dose to better estimate patient radiation exposure 

GE Healthcare to License Duke University's CT Organ Dosimetry Technology

July 31, 2017 — GE Healthcare announced that it has licensed computed tomography (CT) organ dosimetry technology developed at Duke University. The technology enables automatic calculation of organ dose, helping the clinician to better estimate the radiation exposure to the patient. The automatic calculation reduces the time needed to perform assessments for large numbers of patients, enabling epidemiologic and dose trend analysis studies.

 “This technology assesses organ doses in patients undergoing CT in an examination-specific manner, where granular dose estimates are precisely informed by the patient anatomy and the exact irradiation condition,” said Ehsan Samei, a professor of radiology, physics and biomedical engineering at Duke, who led development of the tool. “The technology includes a realistic estimation of variability associated with the dose estimates, raising the confidence in the reported values.”

The technology will be incorporated into an organ dose module within GE’s DoseWatch, a digital informatics solution that automatically collects, monitors and reports on radiation dose indices for diagnostic imaging exams. DoseWatch is used by healthcare providers around the world to reduce variation in practice, help ensure patient safety, and drive compliance with government regulations and accreditation requirements. DoseWatch will provide the CT study acquisition information for the organ dose calculation, as well as the machine-learning technology to accurately match a patient with his or her electronic counterpart.

Duke’s technology employs a unique convolution-based approach to organ dose and leverages the XCAT phantom library, a collection of more than 400 highly detailed computational phantoms for adult men, women, pediatric and pregnant patients. The XCAT library is referenced in over 100 peer-reviewed articles.

Duke has published previously on the convolution-based estimation of organ dose. GE and Duke presented jointly at the 2016 Radiological Society of North America (RSNA) annual meeting on a generalized framework for organ dose monitoring for CT.

For more information: www.gehealthcare.com


Related Content

News | Computed Tomography (CT)

At the annual AHRA (American Healthcare Radiology Administrators) conference in Orlando, Florida, Bayer announced an ...

Time August 09, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | Radiation Therapy

July 22, 2024 — RefleXion Medical, an external-beam theranostic oncology company, today announced that researchers from ...

Time July 22, 2024
arrow
News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
Subscribe Now