Artificial Intelligence powered breast ultrasound

Research image, courtesy of POSTECH. 


March 10, 2023 — Breast cancer undisputedly has the highest incidence rate in female patients. Moreover, out of the six major cancers, it is the only one that has shown an increasing trend over the past 20 years. The chance of survival would be higher if breast cancer is detected and treated early. However, the survival rate drastically decreases to less than 75% after stage 3, which means early detection with regular medical check-ups is critical for reducing patient mortality. . Recently a research team at POSTECH developed an AI network system for ultrasonography to accurately detect and diagnose breast cancer. 

A team of researchers from POSTECH led by Professor Chulhong Kim (Department of Convergence IT Engineering, the Department of Electrical Engineering, and the Department of Mechanical Engineering), and Sampa Misra and Chiho Yoon (Department of Electrical Engineering) has developed a deep learning-based multimodal fusion network for segmentation and classification of breast cancers using B-mode and strain elastography ultrasound images. The findings from the study were published in Bioengineering & Translational Medicine. 

Ultrasonography is one of the key medical imaging modalities for evaluating breast lesions. To distinguish benign from malignant lesions, computer-aided diagnosis (CAD) systems have offered radiologists a great deal of help by automatically segmenting and identifying features of lesions. 

Here, the team presented deep learning (DL)-based methods to segment the lesions and then classify them as benign or malignant, using both B-mode and strain elastography (SE-mode) images. First of all, the team constructed a ‘weighted multimodal U-Net (W-MM-U-Net) model’ where the optimum weight is assigned on different imaging modalities to segment lesions, utilizing a weighted-skip connection method. Also, they proposed a ‘multimodal fusion framework (MFF)’ on cropped B-mode and SE-mode ultrasound (US) lesion images to classify benign and malignant lesions. 

The MFF consists of an integrated feature network (IFN) and a decision network (DN). Unlike other recent fusion methods, the proposed MFF method can simultaneously learn complementary information from convolutional neural networks (CNN) that are trained with B-mode and SE-mode US images. The features of the CNN are ensembled using the multimodal EmbraceNet model, while DN classifies the images using those features. 

The method predicted seven benign patients as being benign in three out of the five trials and six malignant patients as being malignant in five out of the five trials, according to the experimental results on the clinical data. This means the proposed method outperforms the conventional single and multimodal methods and would potentially enhance the classification accuracy of radiologists for breast cancer detection in US images. 

Professor Chulhong Kim explained, “We were able to increase the accuracy of lesion segmentation by determining the importance of each input modal and automatically giving the proper weight.” He added, “We trained each deep learning model and the ensemble model at the same time to have a much better classification performance than the conventional single modal or other multimodal methods.” 

This study was conducted with the support from the Ministry of Science and ICT, the Ministry of Education, and the Electronics and Telecommunications Research Institute (ETRI) of Korea. 

For more information: https://international.postech.ac.kr/ 


Related Content

News | Breast Imaging

Aug. 28, 2024 — Rezolut, LLC recently debuted its latest offering for patients during their annual mammogram ...

Time August 29, 2024
arrow
News | Digital Pathology

Paige has launched OmniScreen, an AI-driven biomarker module capable of evaluating over 505 genes and detecting 1,228 ...

Time August 27, 2024
arrow
News | RSNA

July 31, 2024 — The National Imaging Informatics Course (NIIC), a pioneering program in the radiology field, will return ...

Time July 31, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 30, 2024
arrow
News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
News | Radiology Business

July 25, 2024 — The radiology gender gap is decreasing, but there remains work to be done, according to an editorial ...

Time July 25, 2024
arrow
Videos | Information Technology

Industry trade shows and conferences seem to be making their comeback in 2024. And the Healthcare Information and ...

Time July 25, 2024
arrow
News | Digital Pathology

July 24, 2024 — Proscia, a developer of artificial intelligence (AI)-enabled digital pathology solutions for precision ...

Time July 24, 2024
arrow
Videos | Breast Imaging

Don't miss ITN's latest "One on One" video interview with AAWR Past President and American College of Radiology (ACR) ...

Time July 24, 2024
arrow
Subscribe Now