News | Coronavirus (COVID-19) | January 14, 2022

Novel machine learning framework could alleviate the work of radiologists by providing fast and accurate disease diagnosis

Results of chest X-Rays, detected as Covid-19.

Results of chest X-Rays, detected as Covid-19. Images courtesy of IEEE


January 14, 2022 — The COVID-19 pandemic took the world by storm in early 2020 and has become since then the leading cause of death in several countries, including China, USA, Spain, and the United Kingdom. Researchers are working extensively on developing practical ways to diagnose COVID-19 infections, and many of them have focused their attention on how artificial intelligence (AI) could be leveraged for this purpose.

Several studies have reported that AI-based systems can be used to detect COVID-19 in chest X-ray images because the disease tends to produce areas with pus and water in the lungs, which show up as white spots in the X-ray scans. Although various diagnostic AI models based on this principle have been proposed, improving their accuracy, speed, and applicability remains a top priority.

Now, a team of scientists led by Professor Gwanggil Jeon of Incheon National University, Korea, has developed an automatic COVID-19 diagnosis framework that turns things up a notch by combining two powerful AI-based techniques. Their system can be trained to accurately differentiate between chest X-ray images of COVID-19 patients from non-COVID-19 ones. Their paper was made available online on October 27, 2021, and published on November 21, 2021, in Volume 8, Issue 21 of the IEEE Internet of Things Journal.

The two algorithms the researchers used were Faster R-CNN and ResNet-101. The first one is a machine learning-based model that uses a region-proposal network, which can be trained to identify the relevant regions in an input image. The second one is a deep-learning neural network comprising 101 layers, which was used as a backbone. ResNet-101, when trained with enough input data, is a powerful model for image recognition. "To the best of our knowledge, our approach is the first to combine ResNet-101 and Faster R-CNN for COVID-19 detection," remarked Prof. Jeon, "After training our model with 8800 X-ray images, we obtained a remarkable accuracy of 98%."

The research team believes that their strategy could prove useful for the early detection of COVID-19 in hospitals and public health centers. Using automatic diagnostic techniques based on AI technology could take some work and pressure off of radiologists and other medical experts, who have been facing huge workloads since the pandemic started. Moreover, as more modern medical devices become connected to the Internet, it will be possible to feed vast amounts of training data to the proposed model; this will result in even higher accuracies, and not just for COVID-19, as Prof. Jeon stated: "The deep learning approach used in our study are applicable to other types of medical images and could be used to diagnose different diseases."

For more information: www.inu.ac.kr/mbshome/mbs/inuengl/index.html

Related COVID Content:

COVID-19 Fallout May Lead to More Cancer Deaths

Kawasaki-like Inflammatory Disease Affects Children With COVID-19

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

CMS Now Requires COVID-19 Vaccinations for Healthcare Workers by January 4

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

Case Study Describes One of the First U.S. Cases of MIS-C

NIH-funded Project Wants to Identify Children at Risk for MIS-C From COVID-19


Related Content

News | Breast Imaging

Aug. 28, 2024 — Rezolut, LLC recently debuted its latest offering for patients during their annual mammogram ...

Time August 29, 2024
arrow
News | Digital Pathology

Paige has launched OmniScreen, an AI-driven biomarker module capable of evaluating over 505 genes and detecting 1,228 ...

Time August 27, 2024
arrow
News | Computed Tomography (CT)

SPONSORED CONTENT — Fujifilm’s latest CT technology brings exceptional image quality to a compact and user- and patient ...

Time August 06, 2024
arrow
News | RSNA

July 31, 2024 — The National Imaging Informatics Course (NIIC), a pioneering program in the radiology field, will return ...

Time July 31, 2024
arrow
News | Radiology Business

July 31, 2024 — The American Registry of Radiologic Technologists (ARRT) announced the three Registered Technologists (R ...

Time July 31, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 30, 2024
arrow
Feature | Computed Tomography (CT) | By Melinda Taschetta-Millane

In the ever-evolving landscape of medical imaging, computed tomography (CT) stands out as a cornerstone technology ...

Time July 30, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
Subscribe Now