Feature | March 03, 2015

Interventional radiologists use 3-D printers to develop personalized medical devices to deliver antibiotics, chemotherapy in targeted manner

March 3, 2015 — A study being presented at the Society of Interventional Radiology’s annual scientific meeting says 3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs. With the technology, clinicians would have the ability to construct devices to a specific size and shape. Researchers and engineers collaborated to print catheters, stents and filaments that were bioactive, giving these devices the ability to deliver antibiotics and chemotherapeutic medications to a targeted area in cell cultures.

"3-D printing allows for tailor-made materials for personalized medicine," said Horacio R. D'Agostino, M.D., FSIR, lead researcher and an interventional radiologist at Louisiana State University Health Sciences Center (LSUH) in Shreveport. "It gives us the ability to construct devices that meet patients' needs, from their unique anatomy to specific medicine requirements. And as tools in interventional radiology, these devices are part of treatment options that are less invasive than traditional surgery," he added.

Using 3-D printing technology and resorbable bioplastics, D'Agostino and his team of biomedical engineers and nanosystem engineers at LSUH and Louisiana Tech University developed bioactive filaments, chemotherapy beads, and catheters and stents containing antibiotics or chemotherapeutic agents. The team then tested these devices in cell cultures to see if they could inhibit growth of bacteria and cancer cells.

When testing antibiotic-containing catheters that could slowly release the drug, D'Agostino's team found that the devices inhibited bacterial growth. Researchers also saw that filaments carrying chemotherapeutic agents were able to inhibit the growth of cancer cells.

"We treat a wide variety of patients and, with some patients, the current one-size-fits-all devices are not an option," added D'Agostino. "3-D printing gives us the ability to craft devices that are better suited for certain patient populations that are traditionally tough to treat, such as children and the obese, who have different anatomy. There's limitless potential to be explored with this technology," he noted.

The research team is also able to print biodegradable filaments, catheters and stents that contain antibiotics and chemotherapeutic agents. These types of devices may help patients avoid the need to undergo a second procedure or treatment when conventional materials are used.

D'Agostino believes that this early success with 3-D-printed instruments in the lab warrants further studies, with the goal of receiving approval to use these devices in humans. He also sees an opportunity to collaborate with other medical specialties to deliver higher-quality, personalized care to all types of patients.

For more information: www.sirweb.org


Related Content

News | PET-CT

July 25, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET & PET-CT imaging ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | Neuro Imaging

June 12, 2024 — Brainet, a developer of cutting-edge diagnostic tools for assessing brain health, and SimonMed Imaging ...

Time June 12, 2024
arrow
News | ARRS

May 8, 2024 — Compared to males, women in radiology are at a consistently higher risk of not matching into diagnostic ...

Time May 08, 2024
arrow
News | Pediatric Imaging

April 16, 2024 — The Society of Interventional Radiology (SIR) has published a new position statement outlining best ...

Time April 16, 2024
arrow
Feature | Radiation Oncology | By Melinda Taschetta-Millane

In a new 3-part video series on advancements in diagnostic radiology with Robert L. Bard, MD, PC, DABR, FASLMS ...

Time April 10, 2024
arrow
News | Prostate Cancer

March 27, 2024 — A minimally invasive treatment using MRI and transurethral ultrasound instead of surgery or radiation ...

Time March 27, 2024
arrow
News | SIR

March 26, 2024 — Robert J. Lewandowski, MD, FSIR, an interventional radiologist and professor at Northwestern Medicine ...

Time March 26, 2024
arrow
News | SIR

March 26, 2024 — The Society of Interventional Radiology (SIR) inducted 34 new Fellows during its Annual Scientific ...

Time March 26, 2024
arrow
Subscribe Now