Feature | January 27, 2015

Printed material can be combined with patient’s own cells for customized tissue segments

3-D printing, tracheal reconstruction, STS, Goldstein, Feinstein Institute

January 27, 2015 — Three-dimensional (3-D) printing can effectively create a biodegradable tracheal segment containing a patient’s own cells for use in complex tracheal reconstruction, according to a proof of concept study abstract released at the 51st Annual Meeting of The Society of Thoracic Surgeons.

Traditional treatments for tracheal diseases such as stenosis or malacia (abnormal softening of the tissue) usually involve removal of the affected tracheal segment.

“Three-dimensional printing and tissue engineering has the potential for creation of a custom-designed tracheal replacement prosthesis in the lab so that the affected tracheal segment can be ‘swapped out’ instead of removed,” said lead author Todd Goldstein, Ph.D., of the Feinstein Institute for Medical Research, part of the North Shore-LIJ Health System in New York. “Making a windpipe or trachea is uncharted territory. It has to be rigid enough to withstand coughs, sneezes and other shifts in pressure, yet flexible enough to allow the neck to move freely. With 3-D printing, we were able to construct 3-D printed scaffolding that the surgeons could immediately examine and then we could work together in real time to modify the designs.”

Goldstein and colleagues used a custom-designed MakerBot Replicator 2X Experimental 3-D printer that had been modified by engineers to enable printing of living cells. The printer produces a biodegradable scaffold that can be combined with living cells to create a tracheal segment. The size and shape of the scaffold can be customized for each patient. This is a first for medical research where regular MakerBot PLA Filament was used to 3-D print a custom tracheal scaffolding, which was combined with living cells to create a tracheal segment.

“MakerBot was extremely helpful and consulted on optimizing our design files so they would print better and provided advice on how to modify the MakerBot Replicator 2X Experimental 3-D Printer to print with PLA and the biomaterial,” said Goldstein. “We actually found designs to modify the printer on MakerBot’s Thingiverse website to print PLA with one extruder and the biomaterial with the other extruder. We 3-D-printed the needed parts with our other MakerBot Replicator Desktop 3-D Printer, and used them to modify the MakerBot Replicator 2X Experimental 3-D Printer so that we could better iterate and test our ideas.”

For their study, the researchers made three types of printed segments: empty segments, segments without cells (controls) and segments that had been combined with living cells. The bio-printed cells were tested for viability, proliferation (cell growth and division) and gene expression. The researchers found that the cells survived the printing process, were able to continue dividing and produced the cellular properties expected in healthy tracheal cartilage.

“Our results show that three-dimensional printing can be combined with tissue engineering to effectively produce a partial tracheal replacement graft in vitro,” said Goldstein. “Our data demonstrate that the cartilage cells seeded on the graft retain their biological capability and were able to proliferate at the same rate as native cells.”

The authors said that 3-D printing has the potential to revolutionize medicine; patients are already seeing benefits from the technology in the area of customized prosthetics for limb replacement. Reconstructive craniofacial and cardiothoracic surgeons also have been using 3-D printers to build models for more precise surgical planning. 

“We think the next phase will be integrating three-dimensional printing and tissue engineering to produce customized biological replacement parts,” said Goldstein. “While further development is necessary before a clinical trial would be viable, our results show that 3-D printing technology is a feasible alternative to traditional treatments.”

3-D printed tissue is not yet approved by the U.S. Food and Drug Administration.

For more information: www.sts.org


Related Content

News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | Radiology Business

February 1, 2024 — Banyan Software, a leading acquirer and permanent home for great software businesses, announces the ...

Time February 01, 2024
arrow
News | Medical 3-D Printing

December 6, 2023 — Materialise, a global leader in 3D planning and printing services for the medical industry, has ...

Time December 06, 2023
arrow
Feature | Magnetic Resonance Imaging (MRI) | By Johnson Polakkal Joseph

Magnetic resonance imaging (MRI) is a technology that has been around for more than four decades and is a staple in ...

Time May 01, 2023
arrow
News | ARRS

April 18, 2023 — Findings from an award-winning Scientific Online Poster presented during the 2023 ARRS Annual Meeting ...

Time April 18, 2023
arrow
News | Medical 3-D Printing

May 11, 2022 — Adaptiiv Medical Technologies is collaborating with HP Inc. and Varian, a Siemens Healthineers company ...

Time May 11, 2022
arrow
Videos | Radiation Oncology

Douglas E. Holt, M.D., a radiation oncologist at Eastern Idaho Regional Medical Center, explains the use of 3-D virtual ...

Time February 02, 2022
arrow
Videos | Computed Tomography (CT)

Cynthia McCollough, Ph.D., director of Mayo Clinic's CT Clinical Innovation Center, explains how photon-counting ...

Time January 27, 2022
arrow
News | Mobile C-Arms

January 18, 2022 – Philips Healthcare announced physicians will now have access to advanced new 3D image guidance ...

Time January 18, 2022
arrow
Feature | Enterprise Imaging

Taking advantage of new technology advances, several radiology PACS, enterprise imaging and cardiovascular information ...

Time November 04, 2021
arrow
Subscribe Now