News | Computed Tomography (CT) | March 15, 2022

Improved imaging for medicine and material sciences

Julia Herzen, Professor of Biomedical Imaging Physics at TUM, working together with her team at the micro-computed tomography scanner. Image courtesy of René Lahn

March 15, 2022 — Researchers in biomedical physics and biology have significantly improved micro-computed tomography, more specifically imaging with phase contrast and high brilliance x-ray radiation. They have developed a new microstructured optical grating and combined it with new analytical algorithms. The new approach makes it possible to depict and analyze the microstructures of samples in greater detail, and to investigate a particularly broad spectrum of samples.

Micro-computed tomography (micro-CT) is an imaging method which generates detailed three-dimensional images of the internal structure of samples with small dimensions. Researchers in biology, medicine or material sciences can use this method to obtain information on the structure and characteristics of tissue and material samples which are important in diagnoses and other analyses.

Micro-CT is based on x-ray images which are reconstructed to form a three-dimensional image. Depending on the sample, different x-ray imaging methods are used in order to achieve the most accurate depiction possible. Here the key parameters are resolution, contrast and the sensitivity of the method used.

X-ray imaging with phase contrast

X-ray imaging with phase contrast is particularly well-suited for investigating soft tissue. The method employs the refraction of the x-rays caused by the sample's structures in order to obtain contrast for these structures and thus to depict soft tissue in greater detail than it is possible with conventional x-ray methods.

In many phase-contrast methods, optical components modulate the x-rays on their way to the detector, resulting in what is referred to as a diffraction pattern at the detector. "When comparing this pattern with and without the sample in the x-ray beam, the refraction of the x-rays on the sample provides information about its characteristics," says Julia Herzen, Professor of Biomedical Imaging Physics at the Technical University of Munich (TUM).

Until now inefficient structures such as sandpaper and absorption masks have been used for this type of modulation, but in the meantime a variety of optical gratings are available. "The function of the new optical gratings resembles that of small lenses. The gratings focus the x-rays to form tiny points. This renders the differences in intensity with and without the sample much clearer and makes it possible to visualize even minute differences in the tissue in greater detail," says Prof. Herzen.

High contrast, high resolution and high sensitivity

Physicist Julia Herzen and her team have now introduced a new method for micro-CT with phase contrast using high-brilliance x-ray radiation. The technology is based on a newly developed optical grating referred to as a Talbot Array Illuminator. This new optical element is comparatively easy to produce, is resilient to x-ray radiation and can be used with different energies. This establishes the technically necessary prerequisites for high contrast. The new method enables more efficient use of the radiation dose than with ordinary modulators such as sandpaper and significantly reduces scan times.

"By combining our newly developed Talbot Array Illuminator with new analysis software optimized for the purpose, we've been able to significantly improve imaging and analysis with micro-CT. The new technology is more sensitive than comparable methods in this field. At very high resolutions, it allows to depict soft tissue with higher contrast than previously. High sensitivity is particularly important for example in order to detect fine differences within soft tissue," says Prof. Herzen.

Analysis of a broad spectrum of samples

The new technology can be used to investigate a particularly broad spectrum of samples. Researchers can even simultaneously depict materials of greatly differing compositions, for example water and oil embedded in stone, which was not possible in the past using conventional methods. This provides crucial advantages over conventional methods not only in medicine and biology, but also opens up new application possibilities in material sciences, for example in geology.

Quantitative analysis is possible

"In contrast to previous approaches, our new method also makes quantitative analysis possible. We can make and compare absolute measurements of the electron density of samples, without the need for any assumptions about the samples," explains Prof. Herzen. Further studies will investigate the potential of this new option in a variety of applications.

For more information: https://www.tum.de/en/


Related Content

News | Computed Tomography (CT)

At the annual AHRA (American Healthcare Radiology Administrators) conference in Orlando, Florida, Bayer announced an ...

Time August 09, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | Digital Radiography (DR)

July 18, 2024 — At the Annual Meeting of AHRA (the Association for Medical Imaging Management), Agfa Radiology Solutions ...

Time July 18, 2024
arrow
News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
Subscribe Now