News | Artificial Intelligence | January 31, 2018

New study’s findings will help train artificial intelligence to diagnose diseases

Machine Learning Techniques Generate Clinical Labels of Medical Scans

January 31, 2018 — Researchers used machine learning techniques, including natural language processing algorithms, to identify clinical concepts in radiologist reports for computed tomography (CT) scans, according to a new study. The study was conducted at the Icahn School of Medicine at Mount Sinai and published in the journal Radiology. The technology is an important first step in the development of artificial intelligence (AI) that could interpret scans and diagnose conditions.

From an ATM reading handwriting on a check to Facebook suggesting a photo tag for a friend, computer vision powered by artificial intelligence is increasingly common in daily life. AI could one day help radiologists interpret X-rays, CT scans and magnetic resonance imaging (MRI) studies. But for the technology to be effective in the medical arena, computer software must be taught the difference between a normal study and abnormal findings.

This study aimed to train this technology how to understand text reports written by radiologists. Researchers created a series of algorithms to teach the computer clusters of phrases. Examples of terminology included words like phospholipid, heartburn and colonoscopy.

Researchers trained the computer software using 96,303 radiologist reports associated with head CT scans performed at The Mount Sinai Hospital and Mount Sinai Queens between 2010 and 2016. To characterize the “lexical complexity” of radiologist reports, researchers calculated metrics that reflected the variety of language used in these reports and compared these to other large collections of text: thousands of books, Reuters news stories, inpatient physician notes and Amazon product reviews.

“The language used in radiology has a natural structure, which makes it amenable to machine learning,” said senior author Eric Oermann, M.D., instructor in the Department of Neurosurgery at the Icahn School of Medicine at Mount Sinai.  “Machine learning models built upon massive radiological text datasets can facilitate the training of future artificial intelligence-based systems for analyzing radiological images.”

Deep learning describes a subcategory of machine learning that uses multiple layers of neural networks (computer systems that learn progressively) to perform inference, requiring large amounts of training data to achieve high accuracy. Techniques used in this study led to an accuracy of 91 percent, demonstrating that it is possible to automatically identify concepts in text from the complex domain of radiology.

"The ultimate goal is to create algorithms that help doctors accurately diagnose patients,” said first author John Zech, a medical student at the Icahn School of Medicine at Mount Sinai.  “Deep learning has many potential applications in radiology — triaging to identify studies that require immediate evaluation, flagging abnormal parts of cross-sectional imaging for further review, characterizing masses concerning for malignancy — and those applications will require many labeled training examples."

“Research like this turns big data into useful data and is the critical first step in harnessing the power of artificial intelligence to help patients,” said study co-author Joshua Bederson, M.D., professor and system chair for the Department of Neurosurgery at Mount Sinai Health System and clinical director of the Neurosurgery Simulation Core.

Researchers at Boston University and Verily Life Sciences collaborated on the study.

For more information: www.mountsinai.org

 


Related Content

News | Breast Imaging

Aug. 28, 2024 — Rezolut, LLC recently debuted its latest offering for patients during their annual mammogram ...

Time August 29, 2024
arrow
News | Digital Pathology

Paige has launched OmniScreen, an AI-driven biomarker module capable of evaluating over 505 genes and detecting 1,228 ...

Time August 27, 2024
arrow
News | Computed Tomography (CT)

At the annual AHRA (American Healthcare Radiology Administrators) conference in Orlando, Florida, Bayer announced an ...

Time August 09, 2024
arrow
News | RSNA

July 31, 2024 — The National Imaging Informatics Course (NIIC), a pioneering program in the radiology field, will return ...

Time July 31, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 30, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
News | Artificial Intelligence

July 26, 2024 — GE HealthCare and Amazon Web Services, Inc. (AWS), an Amazon.com, Inc. company, announced a strategic ...

Time July 26, 2024
arrow
Videos | Information Technology

Industry trade shows and conferences seem to be making their comeback in 2024. And the Healthcare Information and ...

Time July 25, 2024
arrow
Subscribe Now