News | Radiation Dose Management | February 23, 2017

Research team uses ACR CT Dose Index Registry data to develop diagnostic reference levels and achievable doses across patient sizes

common adult CT examinations, computed tomography, diagnostic reference levels, DRLs, radiation dose, achievable dose, AD

February 23, 2017 — Using data from the world’s largest computed tomography (CT) dose index registry, researchers have established national dose levels for common adult CT examinations based on patient size. Healthcare facilities can optimize these exam protocols so that dose is commensurate with the size of the patient, avoiding unnecessary radiation exposure.

Results of the two-year study, published online in the journal Radiology, established patient size-based diagnostic reference levels (DRLs) and achievable doses (ADs) for the 10 most common CT head, neck and body examinations.

While the impact of patient size on radiation dose is well established, national DRLs previously provided only one value for each examination based on a standard-size phantom representing an average patient, a single patient size or data averaged across all patient sizes.

For the study, Kalpana M. Kanal, Ph.D., a medical physicist, professor and section chief in diagnostic physics in the Department of Radiology at the University of Washington School of Medicine, Seattle, and colleagues examined actual patient data from the American College of Radiology (ACR) CT Dose Index Registry to develop size-based DRLs that enable healthcare facilities to compare their patient doses with national benchmarks and more effectively optimize CT protocols for the wide range of patient sizes they examine.

“This extensive participation and totally automated complete capture of all patient examinations enabled the development of robust, clinically-based national DRLs and ADs,” Kanal said.

DRLs — benchmarks for radiation protection and optimization in imaging — were first mentioned in 1990 by the International Commission on Radiological Protection, while the concept of ADs was introduced in 1999 by the United Kingdom National Radiation Protection Board to further optimize CT protocols.

Decades later, there are few national recommendations for DRLs and ADs, mainly because a large volume of robust patient data on CT examinations did not exist until the ACR launched its Dose Registry Index in 2011. As of 2016, the ACR registry includes more than 30 million examinations from over 1,500 facilities.

In their research, Kanal and colleagues accessed more than 1.3 million ACR CT Dose Index Registry examinations conducted in 2014 at 538 healthcare facilities throughout the United States, located in primarily metropolitan and suburban areas as well as community hospitals.

For head examinations, researchers used lateral thickness as an indicator of patient size, while water-equivalent diameter was used for neck and body examinations.

Data from the 1.3 million CT exams provided median values, as well as means and 25th and 75th DRL percentiles for CT dose index (CTDIvol), dose-length product (DLP) and size-specific dose estimate (SSDE).

DRLs are typically set at the 75th percentile of the dose distribution from a survey conducted across a broad user base using a specified dose-measurement protocol. ADs are set at the 50th percentile of a dose distribution based on the fact that roughly 50 percent of facilities have already achieved doses at or below this value.

Results demonstrated that the new DRLs are not markedly different from those used in other countries.

The use of DRLs has been shown to reduce the overall dose and the range of doses observed in clinical practice, Kanal said. In terms of using the benchmarks established in their research, she stresses that DRLs should be used to determine if a facility’s dose indexes are unusually high, and are not to be used as target doses.

“Both ADs and DRLs are provided to encourage facilities to optimize dose to a lower level than that indicated by the DRL,” Kanal said. “Image quality must be taken into consideration when using DRLs and ADs to evaluate CT protocols on each scanner to determine if protocols are optimized.”

Ideally, facilities should analyze and compare their median and size-grouped dose indexes with the respective size-based ADs and DRLs. If size-grouped dose indexes are not available, they should compare their overall median indexes with the average DRLs and ADs across all patient sizes.

“DRLs and ADs are not intended to be used for comparisons with dose indexes for individual patients,” Kanal said. “Implementation of DRLs and ADs is most effective if the facility has a system to automatically monitor patient dose indexes so that aggregate results may be evaluated.”

Kanal and colleagues plan to expand their analysis to include high-dose examinations and various scanner configurations and will develop DRLs and ADs for the pediatric population.

Radiologists, radiation oncologists, medical physicists and other radiology professionals are working together to standardize CT protocols.

For more information: www.pubs.rsna.org/journal/radiology

References

Kanal, K.M., Butler, P.F., Sengupta, D., Bhargavan-Chatfield, B., et al. "U.S. Diagnostic Reference Levels and Achievable Doses for 10 Adult CT Examinations," Radiology. Published online Feb. 21, 2017. DOI: 10.1148/radiol.2017161911


Related Content

News | Computed Tomography (CT)

At the annual AHRA (American Healthcare Radiology Administrators) conference in Orlando, Florida, Bayer announced an ...

Time August 09, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
Subscribe Now