News | Magnetic Resonance Imaging (MRI) | February 01, 2017

RSNA study uses cardiac MR strain analysis, blood and urine samples to assess cardiac contractility, blood pressure and heart rate

RSNA 2016, short-term sleep deprivation effects, heart function, clinical study, cardiac magnetic resonance, CMR strain analysis

February 1, 2017 — Too little sleep takes a toll on your heart, according to a new study presented at the 2016 annual meeting of the Radiological Society of North America (RSNA), Nov. 27-Dec. 1 in Chicago.

People who work in fire and emergency medical services, medical residencies and other high-stress jobs are often called upon to work 24-hour shifts with little opportunity for sleep. While it is known that extreme fatigue can affect many physical, cognitive and emotional processes, this is the first study to examine how working a 24-hour shift specifically affects cardiac function.

"For the first time, we have shown that short-term sleep deprivation in the context of 24-hour shifts can lead to a significant increase in cardiac contractility, blood pressure and heart rate," said study author Daniel Kuetting, M.D., from the Department of Diagnostic and Interventional Radiology at the University of Bonn in Bonn, Germany.

For the study, Kuetting and colleagues recruited 20 healthy radiologists, including 19 men and one woman, with a mean age of 31.6 years. Each of the study participants underwent cardiovascular magnetic resonance (CMR) imaging with strain analysis before and after a 24-hour shift with an average of three hours of sleep.

"Cardiac function in the context of sleep deprivation has not previously been investigated with CMR strain analysis, the most sensitive parameter of cardiac contractility," Kuetting said.

The researchers also collected blood and urine samples from the participants and measured blood pressure and heart rate.

Following short-term sleep deprivation, the participants showed significant increases in mean peak systolic strain (pre = -21.9; post = -23.4), systolic (112.8; 118.5) and diastolic (62.9; 69.2) blood pressure and heart rate (63.0; 68.9). In addition, the participants had significant increases in levels of thyroid stimulating hormone (TSH), thyroid hormones FT3 and FT4, and cortisol, a hormone released by the body in response to stress.

Although the researchers were able to perform follow-up examinations on half of the participants after regular sleep, Kuetting noted that further study in a larger cohort is needed to determine possible long-term effects of sleep loss.

"The study was designed to investigate real-life work-related sleep deprivation," Kuetting said. "While the participants were not permitted to consume caffeine or food and beverages containing theobromine, such as chocolate, nuts or tea, we did not take into account factors like individual stress level or environmental stimuli."

As people continue to work longer hours or work at more than one job to make ends meet, it is critical to investigate the detrimental effects of too much work and not enough sleep. Kuetting believes the results of this pilot study are transferable to other professions in which long periods of uninterrupted labor are common.

"These findings may help us better understand how workload and shift duration affect public health," he said.

Co-authors on the study are Andreas Feisst, M.D., Rami Homsi, M.D., Julian A. Luetkens, M.D., Daniel Thomas, M.D., Ph.D., Hans H. Schild, M.D., and Darius Dabir, M.D.

For more information: www.rsna.org


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | PET-CT

July 25, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET & PET-CT imaging ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Radiology Imaging

July 23, 2024 — EMVision, an Australian medical device company focused on the development and commercialization of ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
Feature | SCCT | by Christine Book

June 27, 2024 — The countdown has begun for the Society of Cardiovascular Computed Tomography (SCCT) 19th Annual ...

Time June 27, 2024
arrow
News | Clinical Trials

June 27, 2024 — Prenuvo, which makes whole-body MRI screening for early cancer detection and other diseases, has ...

Time June 27, 2024
arrow
Subscribe Now