News | Clinical Decision Support | October 13, 2016

Machine learning algorithm correlates mammograms, patient chart data to assess individual patient risk, saving over 500 physician hours

breast cancer risk, machine learning algorithm, Houston Methodist, mammograms

October 13, 2016 — Researchers at Houston Methodist have developed an artificial intelligence (AI) software that reliably interprets mammograms, assisting doctors with a quick and accurate prediction of breast cancer risk. According to a new study published online Aug. 29 in Cancer, the computer software intuitively translates patient charts into diagnostic information at 30 times human speed and with 99 percent accuracy.

"This software intelligently reviews millions of records in a short amount of time, enabling us to determine breast cancer risk more efficiently using a patient's mammogram. This has the potential to decrease unnecessary biopsies," said Stephen T. Wong, Ph.D., P.E., chair of the Department of Systems Medicine and Bioengineering at Houston Methodist Research Institute.

The team led by Wong and Jenny C. Chang, M.D., director of the Houston Methodist Cancer Center used the AI software to evaluate mammograms and pathology reports of 500 breast cancer patients. The software scanned patient charts, collected diagnostic features and correlated mammogram findings with breast cancer subtype. Clinicians used results, like the expression of tumor proteins, to accurately predict each patient's probability of breast cancer diagnosis.

Currently, when mammograms fall into the suspicious category, a broad range of 3 to 95 percent cancer risk, patients are recommended for biopsies. Over 1.6 million breast biopsies are performed annually nationwide, and about 20 percent are unnecessarily performed due to false-positive mammogram results of cancer free breasts, estimates the ACS. The Houston Methodist team hopes this artificial intelligence software will help physicians better define the percent risk requiring a biopsy, equipping doctors with a tool to decrease unnecessary breast biopsies.

Manual review of 50 charts took two clinicians 50-70 hours. AI reviewed 500 charts in a few hours, saving over 500 physician hours.

"Accurate review of this many charts would be practically impossible without AI," said Wong.

Co-authors of the study included Tajel Patel, M.D., Mamta Puppala, Richard Ogunti, M.D., Joe. E. Ensor, Ph.D., Tian Cheng He, Ph.D., and Angel A. Rodriguez, M.D. (Houston Methodist); Jitesh B. Shewale, Ph.D. (University of Texas School of Public Health); and Donna P. Ankerst, Ph.D. (University of Texas Health Science Center at San Antonio and Technical University of Munich, Germany).

The research was supported in part by the John S. Dunn Research Foundation.

For more information: www.canceronline.wiley.com


Related Content

News | Breast Imaging

July 29, 2024 — Lunit, a leading provider of AI-powered solutions for cancer diagnostics and therapeutics, announced the ...

Time July 29, 2024
arrow
News | Breast Imaging

July 29, 2024 — iCAD, Inc., a global leader in clinically proven AI-powered cancer detection solutions, announced a ...

Time July 29, 2024
arrow
News | Radiology Business

July 25, 2024 — The radiology gender gap is decreasing, but there remains work to be done, according to an editorial ...

Time July 25, 2024
arrow
Videos | Breast Imaging

Don't miss ITN's latest "One on One" video interview with AAWR Past President and American College of Radiology (ACR) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Flat Panel Displays

July 17, 2024 — LG Electronics (LG) is accelerating its B2B medical device business, expanding its lineup of diagnostic ...

Time July 17, 2024
arrow
Feature | Imaging Technology News - ITN

Be sure to check out the latest digital edition of Imaging Technology News (ITN), featuring the Mobile C-arm Systems ...

Time July 11, 2024
arrow
News | Artificial Intelligence

July 9, 2024 — Lunit, a provider of Artificial Intelligence (AI)-powered solutions for cancer diagnostics and ...

Time July 09, 2024
arrow
News | Prostate Cancer

July 5, 2024 — Lantheus Holdings, Inc., a leading radiopharmaceutical-focused company committed to enabling clinicians ...

Time July 05, 2024
arrow
Feature | Radiology Business

The ITN team wishes you a safe and happy 4th of July!

Time July 04, 2024
arrow
Subscribe Now