News | April 09, 2015

German research uses CT to reveal ammonites were probably able to swim


April 9, 2015 — Using state-of-the-art imaging techniques, paleontologists at the Ruhr-Universität Bochum (RUB) have been examining extinct marine creatures. Quantitative analyses provide new evidence that ammonites were able to swim using their shell - very much like the recent nautilus. For the purpose of the study, the researchers, together with partners from the industry, developed an evaluation process for high-resolution computed tomography (CT) images. The science magazine "RUBIN" reports about the results.

Ammonites had a visceral mass that was protected by a helical shell with several chambers. One theory postulates that the creatures lived at the bottom of the sea. Another claims that they were able to swim by using their shell with its gas-filled chambers to compensate for the weight of their shell and soft body, rendering them neutrally buoyant. Together with his team, RUB researcher René Hoffmann, Ph.D., investigated how much buoyancy an ammonite shell could generate. First, the palaeontologists from Bochum developed a reliable evaluation technique for their CT images, using the nautilus shells as a test object. Their method now enables them to precisely ascertain the volumes of the examined shells and to calculate their weight, as well as the volumes of the gas-filled chambers. The data thus gathered indicate the buoyancy generated by the shell. In order to clarify if the ammonites were able to swim, the researchers need to know if their shell provides sufficient buoyancy to compensate the weight of the visceral mass and the shell. They estimated the latter, basing it on observations of the nautilus animal.

For the CT analysis, Hoffmann needed hollow fossilized ammonites. In order to find them, he traveled to Russia and Japan, among other countries. Together with Ph.D. student Robert Lemanis, he analyzed a 0.98-millimeter-large ammonite hatchling. The result: Three to five gas-filled shell chambers would have been sufficient to enable the ammonites to swim freely in the water directly after hatching. The examined shell had 11 chambers. How many of them existed in the moment of hatching, however, cannot be ascertained — the larger the mollusks became, the more chambers they created. Still, the RUB analyses showed that the hatchling would not have been condemned to dwelling at the bottom, even if only one chamber had been filled with gas; using active swimming motions, the young ammonite would have been able to move around freely in water and stop itself from sinking.

For more information: www.rubin.rub.de/en


Related Content

News | Computed Tomography (CT)

At the annual AHRA (American Healthcare Radiology Administrators) conference in Orlando, Florida, Bayer announced an ...

Time August 09, 2024
arrow
Videos | Radiology Business

Find actionable insights to achieve sustainability and savings in radiology in this newest of ITN’s “One on One” video ...

Time July 30, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 24, 2024 — Telix Pharmaceuticals Limited announced that the United States (U.S.) Food and Drug Administration (FDA) ...

Time July 24, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | Artificial Intelligence

June 18, 2024 — The advancement of Artificial Intelligence (AI) in healthcare to support diagnostic decision making ...

Time June 18, 2024
arrow
News | Artificial Intelligence

June 5, 2024 — Nano-X Imaging, an innovative medical imaging technology company, today announced that its deep-learning ...

Time June 05, 2024
arrow
Subscribe Now