News | July 24, 2014

Scientists in London design new self-assembling nanoparticle that targets tumors, to help earlier cancer diagnosis

July 24, 2014 — Scientists have designed a new self-assembling nanoparticle that targets tumors, to help doctors diagnose cancer earlier. The new nanoparticle, developed by researchers at Imperial College London, boosts the effectiveness of magnetic resonance imaging (MRI) scanning by specifically seeking out receptors that are found in cancerous cells.

The nanoparticle is coated with a special protein, which looks for specific signals given off by tumors, and when it finds a tumor it begins to interact with the cancerous cells. This interaction strips off the protein coating, causing the nanoparticle to self-assemble into a much larger particle so that it is more visible on the scan.

A new study published in the journal Angewandte Chemie used cancer cells and mouse models to compare the effects of the self-assembling nanoparticle in MRI scanning against commonly used imaging agents. The study found the nanoparticle produced a more powerful signal and created a clearer MRI image of the tumor.

The scientists say the nanoparticle increases the sensitivity of MRI scanning and will ultimately improve doctors’ ability to detect cancerous cells at much earlier stages of development.

Nicholas Long, a professor from the department of chemistry at Imperial College London, said the results show real promise for improving cancer diagnosis. "By improving the sensitivity of an MRI examination, our aim is to help doctors spot something that might be cancerous much more quickly. This would enable patients to receive effective treatment sooner, which would hopefully improve survival rates from cancer."

"MRI scanners are found in nearly every hospital up and down the country, and they are vital machines used every day to scan patients' bodies and get to the bottom of what might be wrong. But we are aware that some doctors feel that even though MRI scanners are effective at spotting large tumors, they are perhaps not as good at detecting smaller tumors in the early stages," added Long.

The newly designed nanoparticle provides a tool to improve the sensitivity of MRI scanning, and the scientists are now working to enhance its effectiveness. Said Long: "We would like to improve the design to make it even easier for doctors to spot a tumor and for surgeons to then operate on it. We're now trying to add an extra optical signal so that the nanoparticle would light up with a luminescent probe once it had found its target, so combined with the better MRI signal it will make it even easier to identify tumors."

Before testing and injecting the non-toxic nanoparticle into mice, the scientists had to make sure that it would not become so big when it self-assembled that it would cause damage. They injected the nanoparticle into a saline solution inside a petri dish and monitored its growth over a four-hour period. The nanoparticle grew from 100 to 800 nanometers– still small enough to not cause any harm.

The scientists are now improving the nanoparticle and hope to test their design in a human trial within the next three to five years.

Juan Gallo, Ph.D., department of surgery and cancer, Imperial College London, said, "We're now looking at fine-tuning the size of the final nanoparticle so that it is even smaller but still gives an enhanced MRI image. If it is too small the body will just secrete it out before imaging, but too big and it could be harmful to the body. Getting it just right is really important before moving to a human trial."

For more information: www.imperial.ac.uk


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Radiology Business

July 9, 2024 — Bracco and Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time July 09, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Clinical Trials

June 27, 2024 — Prenuvo, which makes whole-body MRI screening for early cancer detection and other diseases, has ...

Time June 27, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | MRI Breast

June 12, 2024 — Royal Philips recently announced the 1,111th installation of its revolutionary BlueSeal 1.5T magnet ...

Time June 12, 2024
arrow
Subscribe Now