Feature | June 17, 2013

High resolution, low dose imaging modality could diversify options for clinicians

The Society of Nuclear Medicine and Molecular Imaging’s 2013 Annual Meeting marks the unveiling of the successful application of a new preclinical hybrid molecular imaging system—single photon emission tomography and magnetic resonance (SPECT/MR)—which has exceptional molecular imaging capabilities in terms of potential preclinical and clinical applications, technological advancement at a lower cost, and reduction of patient exposure to ionizing radiation.

“We are pioneering simultaneous SPECT and MR imaging technologies now demonstrated in preliminary small animal studies,” said Benjamin M.W. Tsui, Ph.D., director of the division of medical imaging physics in the department of radiology, and a professor of radiology, electrical and computer, biomedical engineering, and environmental health sciences at Johns Hopkins University in Baltimore, Md. “We have been building the technology with our industrial partner, TriFoil Imaging—formerly the preclinical business of Gamma Medica, Inc.—for the past five years and have sufficient data now to show that it works. This presents a unique multimodality system that images mice down to a spatial resolution of less than1 mm at high detection efficiency.”

SPECT/MR represents a completely different imaging modality from other hybrid systems like positron emission tomography and computed tomography (PET/CT) and simultaneous PET and magnetic resonance (PET/MR) by allowing hybrid imaging with biomarkers labeled with a wide range of radionuclides. SPECT/MR has a variety of potential applications, including but not limited to imaging for cancer, cardiovascular and neurological diseases, thyroid and other endocrine disorders, trauma, inflammation and infection.

To construct a SPECT insert that works in the magnetic field of an MR system, the developers integrated 16 x 16 pixel and 1.6 mm pixel pitch cadmium zinc telluride (CZT) solid-state detectors that directly convert incoming photons into electrical signals that are not affected by the static magnetic field. The SPECT insert also houses a state-of-the-art “multi-pinhole” collimator that provides both high spatial resolution and capacity for the detection of photons from small animals injected with available or novel nuclear medicine biomarkers that use radionuclides to convey physiological functions of the body. Unlike PET, SPECT has the added bonus of being able to detect photons of different energies from multiple radionuclide-labeled biomarkers for fully customized and application-specific multifunctional imaging.

Other major benefits of the SPECT/MR system include the elimination of the radiation dose associated with CT and the much lower cost of building the technology compared to PET/MR, which cost about $5.5 million for a clinical system. Tsui remarks, though, that the technology is meant not to supplant other technologies but rather to further diversify options for biomedical investigators and clinicians to optimize research and patient care. SPECT/MR could roll out into human trials in the not-too-distant future. “We are confident that with sufficient funding we can build a SPECT/MR system for human brain studies in about two years and begin clinical studies by the third year,” Tsui estimated.

Scientific Paper 595: Benjamin Tsui, Jingyan Xu, Andrew Rittenbach, Abdel-Monem El-Sharkawy, William Edelstein, Department of Radiology, Johns Hopkins University, Baltimore, MD; Kevin Parnham, James Hugg, Gamma Medica, Northridge, CA, “A completed SPECT/MR insert for simultaneous SPECT/MR imaging of small animals,” SNMMI’s 60th Annual Meeting, June 8–12, 2013, Vancouver, British Columbia.

For more information: www.snmmi.org


Related Content

News | PET-CT

July 31, 2024 — In a head-to-head comparison with FDG PET/CT, FDG PET/MRI demonstrated comparable or superior diagnostic ...

Time July 31, 2024
arrow
News | Prostate Cancer

July 30, 2024 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and commercialization ...

Time July 30, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 25, 2024 — NorthStar Medical Radioisotopes, LLC and BWXT Medical Ltd., a subsidiary of BWX Technologies, Inc ...

Time July 25, 2024
arrow
News | PET-CT

July 25, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET & PET-CT imaging ...

Time July 25, 2024
arrow
News | ASTRO

June 21, 2024 — The American Society for Radiation Oncology (ASTRO) announced today that following a nationwide search ...

Time June 21, 2024
arrow
News | Proton Therapy

June 14, 2024 — Atlantic Health System, an integrated health care system setting standards for quality health care in ...

Time June 14, 2024
arrow
News | PET Imaging

June 14, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 14, 2024
arrow
News | SNMMI

June 13, 2024 — The Society of Nuclear Medicine and Molecular Imaging (SNMMI) hosted more than 8,000 physicians ...

Time June 13, 2024
arrow
News | PET-CT

June 13, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 13, 2024
arrow
News | Radiology Business

June 12, 2024 — Cathy Sue Cutler, PhD, FSNMMI, chair of the Isotope Research and Production Department at Brookhaven ...

Time June 12, 2024
arrow
Subscribe Now