February 14, 2013 — Diffusion abnormality index (DAI) shows promise as an imaging biomarker to measure brain tumor response to radiation therapy, according to research being presented at the 2013 Cancer Imaging and Radiation Therapy Symposium. This symposium is sponsored by the American Society for Radiation Oncology (ASTRO) and the Radiological Society of North American (RSNA).

The study included 20 patients who had brain metastases and were treated with whole brain radiotherapy. The total of 45 lesions among the patients was further categorized as 16 responsive, 18 stable and 11 progressive lesions. Diffusion measurements were taken prior to radiation treatment, two weeks after the start of treatment and one month after treatment completion. For each patient, a normal tissue apparent diffusion coefficient (ADC) histogram was used to divide the tumor ADC histogram into three regions: low (high cellularity), normal and high (edema and necrosis) diffusion. Analyzing the complex behavior in ADC of brain metastases from pre-radiation therapy to two weeks after starting treatment, investigators developed a new diffusion index, the DAI, which included both low and high ADC contributions, for prediction of post-treatment tumor response.

Sensitivity and specificity of the change in DAI from pre- to the end of therapy were evaluated and compared with the changes in gross tumor volume from pre-treatment to the end of therapy. The changes were valuable in predicting non-responsive lesions post-treatment. Early prediction of brain tumor response to radiation therapy is vital in providing the most appropriate radiation doses to each lesion.

“While this review included a small number of patients, the data demonstrate that DAI may be a good biomarker to predict brain tumor response,” said lead study author Reza Farjam, a Ph.D. candidate in biomedical engineering focused on cancer functional imaging at the University of Michigan in Ann Arbor, Mich. “Further study of this method is needed to improve early prediction of tumor response to radiation therapy and to help us provide brain cancer patients with more accurate information about their treatment progress.”


Related Content

News

Aug. 5, 2024 — Researchers from The University of Texas MD Anderson Cancer Center have demonstrated that adding ...

Time August 09, 2024
arrow
News | PET-CT

July 31, 2024 — In a head-to-head comparison with FDG PET/CT, FDG PET/MRI demonstrated comparable or superior diagnostic ...

Time July 31, 2024
arrow
Feature | Radiation Oncology | By Christine Book

News emerging from several leading organizations and vendors in the radiation therapy arena came in at a fast pace in ...

Time July 30, 2024
arrow
News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiation Oncology

July 11, 2024 — The American Society for Radiation Oncology (ASTRO) issued the following statement from Jeff M ...

Time July 11, 2024
arrow
News | Radiation Oncology

July 9, 2024 — Insights from the latest Mordor Intelligence report, “Radiotherapy Market Size & Share Analysis - Growth ...

Time July 09, 2024
arrow
News | Prostate Cancer

July 5, 2024 — Lantheus Holdings, Inc., a leading radiopharmaceutical-focused company committed to enabling clinicians ...

Time July 05, 2024
arrow
News | Radiology Business

July 3, 2024 — The American Society of Radiologic Technologists has launched the BeRAD Professionalism Award to ...

Time July 03, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
Subscribe Now