February 4, 2011 – Positron emission tomography (PET) can image metabolic changes following treatment with the protein kinase inhibitor vandetanib, helping to define the therapy’s effectiveness, according to research in The Journal of Nuclear Medicine. Currently being tested in clinical trials, vandetanib inhibits the function of the RET (rearranged-during-transfection protein) proto-oncogene and other protein kinases involved in the development and progression of cancer.

"For the most part, clinical trials have been measuring the effectiveness of vandetanib by changes in tumor size,” said Martin A. Walter, M.D., lead author of the study. “Based on the activating effects of mutated RET and other protein kinases on numerous intracellular metabolic pathways, we hypothesized that PET imaging could play a role in the early evaluation of response to vandetanib."

The study examined the usefulness of metabolic imaging to determine response to vandetanib in three ways. First, medullary thyroid cancer cells were used to create an in vitro model. After cultivation, the cells were treated with vandetanib, and changes in the metabolic profile of the cells were successfully monitored by transcriptional profiling and by radiotracer uptake studies.

Using the same untreated cells, the researchers then created an in vivo model by injecting mice with the cancerous cells and treating them with vandetanib. Small animal PET/computed tomography (CT) imaging was performed and was found to reproduce the in vitro findings of metabolic activity after three days.

Finally, a 43-year old patient with biopsy-proven metastasized medullary thyroid cancer was treated with vandetanib. PET scans taken at 12 and 24 weeks after treatment were able to detect metabolic response to vandetanib, consistent with the in vitro and in vivo samples.

"With the increasing number of available treatment options, careful patient selection is necessary to ensure targeted therapy is administered to those most likely to gain clinical benefit," Walter said. "The identification of markers of treatment efficacy is a key factor for the success of these novel treatment approaches."

Walter also said that the innovative concept has great potential in the field of molecular imaging.

For more information: www.snm.org


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | PET-CT

July 25, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET & PET-CT imaging ...

Time July 25, 2024
arrow
News | PET-CT

July 16, 2024 — A new research paper was published in Oncotarget's Volume 15 on June 20, 2024, titled, “Comparison of ...

Time July 16, 2024
arrow
News | Nuclear Imaging

June 20, 2024 — GE HealthCare joined the world’s top medical and academic institutions at the Society of Nuclear ...

Time June 20, 2024
arrow
News | PET-CT

June 13, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET and PET-CT ...

Time June 13, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
News | Breast Imaging

June 7, 2024 — Scholars and studies funded by Susan G. Komen(R), the world’s leading breast cancer organization ...

Time June 07, 2024
arrow
News | Radiopharmaceuticals and Tracers

June 7, 2024 — Shine Technologies, LLC, a pioneer in next-generation fusion-based technology, today announced a new ...

Time June 07, 2024
arrow
News | Oncology Information Management Systems (OIMS)

May 30, 2024 — RaySearch Laboratories AB announced the release of the latest version of RayCare, the next generation ...

Time May 30, 2024
arrow
News | Prostate Cancer

May 13, 2024 — Avenda Health, an AI healthcare company creating the future of personalized prostate cancer care, unveils ...

Time May 13, 2024
arrow
Subscribe Now