July 29, 2008 - People facing bone marrow transplants have a series of challenges to surmount.

One of the first is the total destruction by radiation of their bone marrow in a process called total body irradiation. This preconditions the person’s body to accept the new marrow as treatment for cancers of the blood and immune system.

Preconditioning may one day be improved if a feasibility study by a group of Chicago-area researchers is validated in further studies. In experiments using a specialized manikin-like form that is the radiological equivalent of the human body, 98 percent of the intended structures received 99 percent of prescribed radiation dose, while normal body structures were spared from high doses.

"Compared to conventional total body irradiation, this new approach reduced radiation to critical body parts such as the heart and the lungs by as much as 64 percent and 30 percent respectively which is a distinct improvement," says lead researcher Bulent Aydogan, Ph.D. of the University of Chicago.

Collaborators include researchers from the University of Illinois/Chicago and Loyola University Medical Center.

The new technique is called linac-based Intensity Modulated Total Marrow Irradiation. “Linac” refers to the linear particle accelerator used to deliver precisely planned doses of radiation to the body. Rather than dosing the entire body equally, it selectively targets bone marrow locations and administers lower radiation doses to the rest of the body.

Such accuracy is made possible by first mapping the patient’s body in 3D using a sophisticated computer scan. Next, computer programs optimize each beam of radiation into smaller “beamlets” so that each beam is individually suited to meet planned dosing goals for a given site.

Finally, a linear particle accelerator (linac) delivers these planned doses to the patient. Radiation is therefore limited to bone marrow and cancerous structures, thus sparing critical organs in the body. If further evidence supports these early findings, the team hopes to move this new treatment to clinical trials involving humans.

For more information: www.aapm.org

Source: American Association of Physicists in Medicine


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 17, 2024 — Hyperfine, a groundbreaking medical device company that has redefined brain imaging with the world’s ...

Time July 17, 2024
arrow
News | Prostate Cancer

July 11, 2024 — GE HealthCare’s MIM Software, a global provider of medical imaging analysis and artificial intelligence ...

Time July 11, 2024
arrow
News | Prostate Cancer

July 2, 2024 — A new editorial paper was published in Oncoscience (Volume 11) on May 20, 2024, entitled, “Deep learning ...

Time July 02, 2024
arrow
News | Clinical Trials

June 27, 2024 — Prenuvo, which makes whole-body MRI screening for early cancer detection and other diseases, has ...

Time June 27, 2024
arrow
News | Pediatric Imaging

June 25, 2024 — Rady Children’s Hospital-San Diego, one of the nation’s top pediatric health care systems, today ...

Time June 25, 2024
arrow
News | MRI Breast

June 12, 2024 — Royal Philips recently announced the 1,111th installation of its revolutionary BlueSeal 1.5T magnet ...

Time June 12, 2024
arrow
News | Radiology Business

May 29, 2024 — Strategic Radiology added a third California member to the nation’s leading coalition of independent ...

Time May 29, 2024
arrow
Subscribe Now